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Abstract
We propose an exactly solvable model of one-dimensional anyons with
competing δ-function and derivative δ-function interaction potentials. The
Bethe ansatz equations are derived in terms of the N-particle sector for
the quantum anyonic field model of the generalized derivative nonlinear
Schrödinger equation. This more general anyon model exhibits richer
physics than that of the recently studied one-dimensional model of δ-function
interacting anyons. We show that the anyonic signature is inextricably related
to the velocities of the colliding particles and the pairwise dynamical interaction
between particles.

PACS numbers: 04.20.Jb, 05.30.Pr
Mathematics Subject Classification: 82B21, 82B23

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Anyons—which interpolate between bosons and fermions—may exist in two dimensions (2D),
obeying fractional statistics. Fractional statistics have recently been observed in experiments
on the quasiparticle excitations of a 2D electron gas in the fractional quantum Hall (FQH)
regime [1]. The anyonic quasiparticles have profound implications for topological quantum
states of matter [2]. For example, the non-Abelian topological order can be studied through
manipulating FQH states in a 2D electron gas. As a consequence, the concept of anyons has
become important in topological quantum computation [3, 4]. In one dimension (1D) anyons
acquire a step-function-like phase when two identical particles exchange their positions.
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Different aspects of anyons in 1D have been considered [5–7]. Among these an anyonic
extension [8] of the 1D integrable Bose gas with δ-function interaction [9, 10] has attracted
recent attention, including the basic construction of the anyon model [11–13]. Many new
results have been obtained for this model, including the connection with Haldane [14] exclusion
statistics [15, 16], correlation functions [12, 17–19], entanglement [20] and expanding anyonic
fluids [21]4.

A key feature of 1D anyons is that they retain fractional statistics in quasi-momentum space
and the anyonic signature of the exchange interaction—the topological anyonic interaction
and dynamical interaction are inextricably related. 1D anyons show an intriguing sensitivity
of the boundary condition of their wavefunction on the specific position of the particles
[11, 12, 23]. Therefore the study of exactly solvable interacting anyons in 1D should give
insight into understanding topological effects in many-body physics.

In this communication we propose a 1D model of anyons with δ-function and derivative
δ-function interaction and solve the model by means of the coordinate Bethe ansatz. The
model contains an additional independent interaction parameter so that in principle one can
study anyonic signatures through tuning the interactions. For this more general model we show
that the anyonic signature is inextricably related to the velocities of the colliding particles and
the pairwise dynamical interaction between identical particles.

2. The model

We consider creation and annihilation operators �†(x) and �(x) at point x, which satisfy the
anyonic commutation relations

�(x)�†(y) = e−iκw(x,y)�†(y)�(x) + δ(x − y)

�†(x)�†(y) = eiκw(x,y)�†(y)�†(x)

�(x)�(y) = eiκw(x,y)�(y)�(x).

(1)

The multi-step function w(x, y) appearing in the phase factors satisfies w(x, y) = −w(y, x) =
1 for x > y, with w(x, x) = 0. In terms of these operators the Hamiltonian describing N
anyons of atomic mass m confined in a length L is

H = h̄2

2m

∫ L

0
dx �†

x(x)�x(x) +
1

2
g

∫ L

0
dx �†(x)�†(x)�(x)�(x)

+ iε
∫ L

0
dx[�†(x)�†(x)�(x)�x(x) − �†

x(x)�†(x)�(x)�(x)], (2)

where we also impose periodic boundary conditions.
The tunable parameters in the model are (i) g = h̄2c/m, the dynamical interaction strength

which drives the particles in elastic scattering through zero range contact interaction, where
c is the coupling constant, (ii) the nonlinear dispersion coupling constant ε, which describes
a delta shift in collisions, and (iii) the statistical parameter κ which varies the statistics of the
particles from pure Bose statistics (κ = 0) to pure Fermi statistics (κ = π). The model differs
from the interacting 1D Bose gas [9, 10] and 1D interacting anyons [8] due to the presence of
the nonlinear dispersion ε, i.e., the s-wave scattering is disturbed by a delta shift in collisions.
Effectively, the 1D scattering length is increased or decreased in individual pairwise collisions
by this dispersion. It follows that the model contains well-known models as special cases
in certain limits. For κ = 0, Hamiltonian (2) reduces to that of the generalized nonlinear
Schrödinger model [24, 26, 27], which has been studied by means of scattering Bethe ansatz

4 Further discussion of the ground-state properties is given in [22].
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in the context of soliton physics. For ε = 0, it describes the model of 1D interacting anyons.
For κ = ε = 0, it reduces to the model of 1D interacting bosons, while for κ = c = 0 it
reduces to the quantum derivative nonlinear Schrodinger model [28]. As we shall see, the
general model (2) exhibits more exotic dynamics than the two models corresponding to the
special cases κ = 0 and ε = 0.

For convenience, we hereafter set h̄ = 2m = 1. We also use a dimensionless coupling
constant γ = c/n to characterize different physical regimes of the anyon gas, where n = N/L

is the linear density.

3. Bethe ansatz

We first present the corresponding equation of motion −i∂t�(x, t) = [H,�(x, t)] via the
time-dependent quantum fields, i.e., the nonlinear Schrödinger equation is given by

i�t = −�xx + g�†�� + 4iε�†��x. (3)

We note that this is an anyonic version of the generalized nonlinear Schrödinger equation.
Restricting to its N-particle sector we can reduce the eigenvalue problem of the Hamiltonian (2)
to a quantum many-body problem. To this end, we define a Fock vacuum state �(x)|0〉 = 0.
Thus we can prove that the number operator N and momentum operator P are conserved,
where

N =
∫ L

0
dx �†(x)�(x) (4)

P = i
∫ L

0
dx �†

x�(x). (5)

In order to properly assign the anyonic phase w(xi, xj ) [8, 11, 12, 15] in the domain
x1 < x2 < · · · < xN , we write the N-particle eigenstate as

|�〉 =
∫ L

0
dxN e−i 1

2 κNχ(x1 . . . xN)�†(x1) . . . �†(xN)|0〉, (6)

where the wavefunction amplitude is of the form

χ(x1 . . . xN) = e
−i 1

2 κ
∑N

xi<xj
w(xi ,xj )

∑
P

A(kP 1 · · · kPN) ei(kP 1x1+...+kPNxN ). (7)

Here the sum extends over all N ! permutations P. The choice of the sign of the anyonic phase
factor in equation (7) can be arbitrary and may lead to different boundary conditions [12]. Here
we prefer to fix a boundary condition where we count the anyonic phase factor in equation (7)
through the order of the particles in the scattering states [11]. By acting on the eigenstate (6)
with Hamiltonian (2) the eigenvalue problem for Hamiltonian (2), namely

H |�〉 =
∫ L

0
dxN e−i 1

2 κNHNχ(x1 . . . xN)�†(x1) . . . �†(xN)|0〉 (8)

can be reduced to solving the quantum-mechanical problem

HNχ(x1 . . . xN) = Eχ(x1 . . . xN), (9)

where

HN = −
N∑

i=1

∂2

∂x2
i

+ g
∑

1�i<j�N

δ(xi − xj ) + i2ε
∑

1�i<j�N

δ(xi − xj )(∂xi
+ ∂xj

). (10)
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This anyon model turns out to be Bethe ansatz solvable with independent values of c, ε and
κ . Changing the coordinates to centre-of-mass coordinates X = (xj + xk)/2 and Y = xj − xk

leads to the eigenvalue equation (9) in the form{(
− ∂2

∂x2
1

· · · − 1

2

∂2

∂X2
− 2

∂2

∂Y 2
· · · − ∂2

∂x2
N

)

+ 2cδ(Y ) + i4εδ(Y )∂X − E

}
χ(. . . xi . . . xj . . .) = 0. (11)

Integrating both sides of this equation with respect to Y from −e to +e and taking the limit
e → 0 gives the discontinuity condition

(∂xj
− ∂xi

)χ(x1, . . . , xi, xj , . . . , xN)|xj =xi+e − (∂xj
− ∂xi

)χ(x1, . . . , xj , xi, . . . , xN)|xj =xi−e

= [2c + i2ε(∂xi
+ ∂xj

)]χ(x1, . . . , xi, xj , . . . , xN)|xi=xj
(12)

on the derivative of the wavefunction. This equation gives a relation between the coefficients
A(kP 1 . . . kPN) of the form

A(. . . kj , ki . . .) = kj − ki + i(c′ − ε′(kj + ki))

kj − ki − i(c′ − ε′(kj + ki))
A(. . . ki, kj . . .) (13)

which is the two-body scattering relation. This relation gives rise to a functional scalar
scattering matrix which factorizes three-body scattering processes into the product of three
two-body scattering matrices [24]. In this sense the Yang–Baxter equation is trivially satisfied,
guaranteeing no diffraction in the scattering process [10, 24]. Consequently, the N-particle
scattering amplitude can be factorized into the products of two-particle amplitudes. Another
way of establishing the integrability of the model is to explicitly construct an infinite number
of higher order conserved quantities, as shown for the 1D Bose gas in [25].

The effective interaction strengths c′ and ε′ appearing in the solution are given by

c′ = c

cos(κ/2)
and ε′ = ε

cos(κ/2)
. (14)

In this model these effective coupling constants implement the transmutation between
statistical and dynamical interactions.

To complete the solution in terms of the Bethe ansatz we impose the periodic boundary
condition χ(x1 = 0, x2 . . . , xN) = χ(x2, . . . , xN , x1 = L) on the anyonic wavefunction
in the fundamental region 0 � x1 < x2 < · · · < xN � L. As in the solution of the
interacting anyon model (ε = 0), this leads to the appearance of various phase factors [11, 12].
The wavefunctions for other regions can be determined through application of the anyonic
symmetry. The periodic boundary condition can also be imposed on other wavefunction
arguments xi , in each case leading to the same anyonic phase factor in the Bethe ansatz
equations (BAE) [11, 12]. For this model, the energy is given by

E =
N∑

i=1

k2
i , (15)

where the quasi-momenta kj satisfy the BAE

eikj L = − eiκ(N−1)

N∏

=1

kj − k
 + i(c′ − ε′(kj + k
))

kj − k
 − i(c′ − ε′(kj + k
))
(16)
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for j = 1, . . . , N . The total momentum is

p =
N∑

i=1

ki = N(N − 1)κ/L. (17)

In minimizing the energy we consider κ(N − 1) = ν (mod 2π ) in the phase factor.
The Bethe ansatz solution provides in principle the full physics of the model. For the case

κ = 0, the BAE (16) are consistent with the scattering states constructed for the generalized
nonlinear Schrödinger model [24, 26]. It is also clear to see from the BAE (16) that the phase
shift

θj,
 = ln

[
kj − k
 + i(c′ − ε′(kj + k
))

kj − k
 − i(c′ − ε′(kj + k
))

]
(18)

depends essentially on the anyon parameter κ , the dynamical interaction strength c and the
nonlinear dispersion of velocity ε through the effective interactions (14). Among the competing
interactions, the nonlinearity parameter ε is essential in determining the bound states. The
δ-function interaction strength c plays the role of a driving force in collisions. However, the
anyonic parameter κ determines the statistical signature of the particles.

4. Preliminary analysis

The asymptotic behaviour of the BAE (16) reveals that bound states exist for c < 0 and
c < 2εν/L. In general, the form of the bound states appears to be extremely complicated.
For example, for N = 2 and L(c − pε) � 1, we have the bound state

{
1
2p ± i 1

2 (c − pε)
}
.

In this communication we focus on the repulsive regime, where c > 0 and |ε| < c/(2p), for
which the Bethe roots are real.

In the weak coupling limit γ � cos(κ/2), the leading term for the ground-state energy,
obtained from the BAE (16), is

E0

N
≈ (N − 1)

L
(c′ − 2ε′ν/L) +

ν2

L2
. (19)

To this order, for κ = 0 the ground-state energy is independent of the nonlinear dispersion ε

and reduces to that of weakly interacting bosons. However, the quasimomentum distribution

g((kj + kj+1)/2) = 1

L(kj+1 − kj )
(20)

deviates from the usual semicircle law [9, 30, 31] at ε = 0 (see figure 1). For ε > 0, the high
density distribution drifts to the right-hand side and the front becomes steeper as the nonlinear
dispersion ε increases. For ε < 0, the high density part drifts to the left hand side. The nature
of this kind of quantum drift in quasimomentum space is due to the delta shift or equivalently
the nonlinear dispersion of velocity, which effectively increases or decreases the 1D scattering
length in individual pairwise collisions.

When the total momentum is non zero, i.e. p �= 0, the left and right drifts are no longer
symmetric with respect to the sign of ε. Here the anyonic parameter κ also introduces quantum
drifts in quasimomentum space. A particular example is illustrated in figure 2. For ε > 0, the
front of the distribution becomes very steep and the width becomes narrower as ε increases.
The energy decreases as ε increases. However, for ε < 0, the distribution becomes flatter. In
this case, the energy increases as |ε| increases.

In the strong coupling limit Lc � 1, one can perform the strong coupling expansion with
the BAE (16). In this limit the ground state of the model becomes that of the Tonks–Girardeau
gas. This is mainly because in the strong repulsive limit, the particles behave like fermions in

5
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Figure 1. Typical figure showing the quantum drift effect of the nonlinear dispersion ε on the
quasimomentum distribution function. Here κ = 0, c = 0.04, L = 2 and N = 45. Drifts to the
left and right are symmetric with respect to the sign of ε.

Figure 2. Typical figure showing the quantum drift effect in the quasimomentum distribution
function with nonlinear dispersion ε and anyonic parameter κ . Here κ = π/100, c = 0.04, L = 2
and N = 45. The drifts are no longer symmetric with respect to the sign of ε.

thermalized states. As a result, the effect induced by the nonlinear dispersion of velocity is
suppressed. To obtain the explicit result for the ground-state energy, let all quasimomenta kj

shift to λj = kj − ν/L and for simplicity, choose N to be odd. In this limit, the quasimomenta
are given explicitly by

λj ≈
[

2njπ

L

(
1 − 4njε

′π
(Lc′ − ε′ν)2

)
+

2ε′N(N2 − 1)π2

3L(Lc′ − ε′ν)2

](
1 +

2N

(Lc′ − ε′ν)

)−1

, (21)

6
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where nj = −(N − 1)/2, . . . , (N − 1)/2. This result indicates that
∑N

j=1 λj = 0. The
corresponding ground-state energy is given by

E0

N
≈ (N2 − 1)π2

3L2

(
1 +

2N

(Lc′ − ε′ν)

)−2

+
ν2

L2
. (22)

It can be seen from the Bethe roots (21) that the flat fermion-like distribution becomes
inclined as |ε| becomes large. The distribution almost linearly increases or decreases depending
on the direction of the current and the parameters κ and ε. The system is strongly collective
in the Tonks–Girardeau limit.

5. Concluding remarks

We have presented an exactly solved model of 1D anyons with general δ-function and derivative
δ-function interaction. The Bethe ansatz solution has been obtained by means of the coordinate
Bethe ansatz. We have seen that the anyonic signature is inextricably related to the nonlinear
dispersion of velocity and the pairwise dynamical interaction between identical particles.
Competing interactions among the anyonic parameter κ and the strengths of the δ-function
interaction c and the nonlinear dispersion of velocity ε result in more subtle bound states and
scattering states. Preliminary analysis of the Bethe ansatz solution in the weak and strong
coupling limits has revealed drifts in the quasimomentum distribution as a function of the
nonlinear dispersion and the anyonic parameter.

The quasimomentum distribution may provide a plausible way of observing anyonic
behaviour in a general model with δ-function and derivative δ-function interaction. In
particular, it suggests the possibility of observing anyonic behaviour via the generalized
nonlinear Schrödinger equation, perhaps with regard to the propagation of solitons in nonlinear
media. On the other hand, the observed quantum drifts in distribution may perhaps also be
seen in experiments with trapped ultracold atoms in and out of equilibrium [32, 33]. The
Bethe ansatz solution should also provide an accessible way of exploring the dynamics in
the time evolution of the generalized nonlinear Schrödinger equation (3), just as the time-
dependent dynamics of the 1D boson model has recently been investigated [34]. In addition,
the investigation of fractional exclusion statistics [14–16, 35–38] in this generalized 1D anyon
gas would provide an insight into the influence on the statistical signature of both dynamical
interaction and nonlinear dispersion.
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